sexta-feira, 22 de março de 2013

A partícula de Deus


 em uma coletiva de imprensa realizada no laboratório CERN (Organização Europeia de Pesquisas Nucleares) em Genebra, na Suíça, cientistas anunciaram o que pode ser a descoberta de uma das partículas elementares para a formação de tudo o que existe: o bóson de Higgs. Há anos, pesquisadores trabalhando no Grande Colisor de Hádrons (LHC, na sigla em inglês), o maior acelerador de partículas que existe, procuram o bóson, partícula que foi proposta pela primeira vez por Peter Higgs em 1964, 48 anos atrás. Agora, duas equipes separadas do LHC – ATLAS e CMS – chegaram a resultados parecidos que estão em conformidade com as previsões teóricas sobre as partículas subatômicas do Modelo Padrão da Física, com a inclusão do bóson de Higgs. Isso indica que a partícula de fato existe. O bóson teria massa de 125.3 GeV, e os resultados têm o nível de certeza de 4,9 sigma (o ideal é 5 sigma, nível necessário para reivindicar uma descoberta, pois significa que há menos de uma chance em um milhão dos dados serem um acaso estatístico). “Foi anunciada a descoberta de um bóson que pode ser o bóson previsto por Higgs há quase 50 anos. A beleza da descoberta vem não apenas da notável previsão teórica, baseada em alguns conceitos bastante simples de simetria, mas do avanço tecnológico que foi preciso fazer para comprovar a sua existência”, comenta a Prof. Dr. Carola Dobrigkeit Chinellato, do Grupo de Física Teórica (GFT), da Universidade Estadual de Campinas (UNICAMP). Tal êxito só foi possível com um enorme esforço e trabalho conjunto de milhares de pesquisadores, físicos, engenheiros e técnicos. “Acho que é mesmo um momento histórico”, diz. Apesar de muita gente achar que o bóson de Higgs é um caso certo, ainda é preciso ter cautela. Os cientistas estão tratando a descoberta como “muito provável”, e pediram tempo para analisar as informações. “Esta cautela é inteiramente justificável. Embora seja relativamente robusto, níveis de certeza maiores do que 4,9 já vieram a ser modificados pelos próprios dados experimentais. É preciso cuidado”, explica o Prof. Dr. Marcelo M. Guzzo, do Instituto de Física Gleb Wataghin, também da UNICAMP. A “descoberta” e o Modelo Padrão da Física O bóson de Higgs é a partícula pela qual supostamente tudo no universo obtém sua massa, inclusive nós, seres humanos. Sendo assim, a partícula era vista como crucial para que os físicos pudessem dar sentido ao universo. Só que ela nunca tinha sido observada por experimentos. Por conta de sua importância nos blocos de construção básicos do universo, o bóson recebeu o apelido de “partícula de Deus”, apelido que Guzzo não simpatiza. “Não gosto do nome ‘Partícula de Deus’, apenas se for pensado como uma espécie de brincadeira. Supondo que tenhamos, de fato, descoberto o Higgs, temos em mãos um quebra-cabeça muito mais completo rumo a uma compreensão das partículas elementares e suas propriedades. Isto é muito bom. Mas outras peças que são igualmente importantes neste quebra-cabeça nunca foram chamadas de ‘Partículas de Deus’”, argumenta. O quebra-cabeça maior seria, por assim dizer, o Modelo Padrão da Física, uma espécie de “livro de instruções” que descreve como as partículas e as forças interagem no universo. Sem a existência do bóson de Higgs, ou seja, de uma partícula que desse massa a todas as outras, todo esse modelo poderia ir por água abaixo. Sendo assim, uma das grandes consequências da descoberta é o fortalecimento desta teoria em detrimento de teorias alternativas. “Podemos afirmar que nada muda no Modelo Padrão das Partículas Elementares. Pelo contrário. O bóson de Higgs fazia parte do Modelo Padrão que sai muito fortalecido por esta descoberta”, diz Guzzo. Agora, qualquer outro modelo alternativo ao Modelo Padrão terá que incorporar o Higgs, que passa a ter status de “evidenciado experimentalmente”. E o bóson de Higgs também ajuda a explicar outras teorias, como a simetria de gauge. “Agora entendemos como a simetria de gauge, um dos pilares da construção do Modelo Padrão e que gera previsões estranhas como, por exemplo, que os bósons intermediários responsáveis pela interação fraca não têm massa, pode incorporar as massas destas partículas que foram encontradas experimentalmente já no início da década de 1970. Isto se dá através do Mecanismo de Higgs”, explica o professor. O badalado bóson de Higgs, então, foi encontrado (provavelmente). Mas o grande vencedor parece ser o Modelo Padrão da Física. “O conjunto começa a ficar muito interessante. Bonito mesmo! A ponto que eu gostaria de ver o Modelo Padrão ensinado nas escolas, como um conhecimento popular. É a consagração do Modelo Atomista que há milênios ronda o conhecimento humano”, opina Guzzo. “Já há muitos anos nós aprendemos sobre a previsão da existência do bóson de Higgs, e ensinamos sobre ele para os nossos alunos. O anúncio dos resultados dos experimentos ATLAS e CMS é motivo de alegria para os físicos, e ainda mais para os físicos que trabalham na área de partículas elementares. Sentimos uma satisfação parecida com a de alguém que está montando um quebra-cabeça enorme e consegue achar a pecinha que estava faltando para completar o quadro”, comemora a professora Carola.

quarta-feira, 20 de março de 2013

Isaac Newton, o "pai da física moderna, morreu há 286 anos


                            

Nascido quase um ano depois da morte de Galileu Galilei, considerado um dos "gigantes" da história da ciência, Isaac Newton revolucionou campos como a matemática, óptica, física e astronomia e é hoje muitas vezes considerado o "maior cientista de todos os tempos". “Se vi mais longe, foi por estar de pé sobre os ombros de gigantes”, disse certa vez o britânico, certamente se referindo também ao trabalho do italiano. Newton, por sua vez, é considerado o pai da física moderna e serviu de influência para cientistas como Albert Einstein. Isaac Newton morreu há 286 anos, no dia 20 de março de 1727.

Newton é um dos nomes mais importantes da ciência - sendo considerado muitas vezes o maior cientista Foto: Getty Images
Newton é um dos nomes mais importantes da ciência - sendo considerado muitas vezes o maior cientista



Newton teve seu trabalho mais reconhecido na sociedade do que outros cientistas, como Johannes Kepler (outro "gigante"). Isaac Newton faleceu na noite de 20 de março de 1727 (31 de março no calendário atual), devido a problemas renais. Newton viveu sozinho, sem nunca ter casado ou mantido relacionamento amoroso sério. O cientista foi enterrado na Abadia de Westminster, ao lado de outros grandes nomes do Reino Unido.
Sir Isaac Newton contempla a força da gravidade ao observar a queda de uma maça, por volta de 1665 Foto: Getty Images

      Sir Isaac Newton contempla a força da gravidade ao observar a queda de uma maça, por volta de 1665

domingo, 3 de fevereiro de 2013

Brasil construirá um acelerador de elétrons


Inicia-se este ano a construção do Sirius, um acelerador de elétrons ou síncrotron de terceira geração, em Campinas, São Paulo. O atual, UVX, um síncrotron de segunda geração, opera em energias de 1,37 GeV (giga elétron-volts), sendo capaz de gerar radiação eletromagnética até a faixa do raio-X macio. O Sirius, por outro lado, será capaz de operar na faixa dos 3 GeV, além de gerar maior intensidade de luz e abranger o raio-X duro (o penúltimo no espectro eletromagnético, atrás dos raios gama), que permite o estudo de estruturas mais densas. Além de trabalhar com faixas de energia maiores, o Sirius também será maior, com 146 metros de diâmetro, contra os 30 metros do UVX, e terá 40 estações experimentais, contra as 16 do UNX que atendem em torno de 500 grupos de pesquisa por ano. Tanto o UVX quanto o Sirius são construídos usando tecnologia e conhecimento totalmente nacionais.

   

Inovação e ousadia
Quando foi apresentado o projeto conceitual do síncrotron, ele já era competitivo em relação a outros síncrotrons de terceira geração, mas o comitê internacional de avaliadores nos desafiou a fazer um projeto ainda mais arrojado. Agora, o novo projeto traz uma série de inovações que o colocam, de fato, na fronteira tecnológica”, conta o físico Antonio José Roque da Silva, diretor do LNLS. O resultado é que o Sírius será inteiramente baseado em ímãs permanentes, em vez de eletroímãs que os outros equipamentos usam. Demais mudanças incluem alterações drásticas na rede magnética e na câmara de vácuo. “O feixe de luz do Sirius estará entre os de maior brilho do mundo”, afirmou Roque da Silva. Na carona do projeto e construção dos dois síncrotrons também ocorrem avanços na engenharia, e o treinamento de mão de obra especializada. Graças ao aprendizado obtido na construção do primeiro síncrotron, espera-se que o novo seja construído em prazo menor.

Síncrotrons 
Um síncrotron é um acelerador de elétrons que produz diferentes comprimentos de onda de luz, do ultravioleta ao raio-X, cada um com aplicações próprias, envolvendo principalmente estudos de estruturas atômicas, moleculares, microscópicas ou macroscópicas. A primeira geração de síncrotron apareceu em 1940, como resultado do primeiro acelerador de partículas. As máquinas projetadas para criar colisões entre partículas subatômicas e átomos tinham um efeito indesejável: perdiam energia na forma de radiação síncrotron, emitida no percurso das partículas. A radiação começou a ser utilizada para experimentos para análise de estruturas moleculares. Estações de trabalho foram atualizadas em seções do acelerador de partículas onde as radiações eram emitidas. A segunda geração de síncrotron era de aceleradores voltados à emissão da radiação síncrotron, e não à colisão de partículas. O UVX, síncrotron de segunda geração brasileiro, começou a ser construído em 1987 e está em operação desde 1997, sendo o primeiro deste tipo no hemisfério sul e ainda o único na América Latina. A terceira geração de síncrotron usa magnetos chamados dispositivos de inserção. Colocados em seções retas do anel, estes magnetos forçam os elétrons a viajar em um padrão de zigue-zague, fornecendo novas radiações. Com o novo síncrotron, o Brasil espera atrair talentos internacionais, como a israelense Ada Yonath, que ganhou o Nobel de Química de 2009 por seu trabalho sobre a estrutura e a função dos ribossomos, ou o americano Brian Kobilka, premiado em 2012 pela descoberta de um novo receptor celular. E, com esforço e ciência, quem sabe algum trabalho produzido nele venha a receber o Nobel. O custo previsto do projeto, que deve terminar em 2016, é de R$ 650 milhões. O Ministério de Ciência, Tecnologia e Inovação (MCTI) já investiu cerca de R$ 55 milhões. Parte dos custos deve ser dividido por parcerias, como a obtida com o governo do Estado de São Paulo, que fará a desapropriação do terreno ao lado do síncrotron atual.

Físicos propõem alternativa gelada ao Big Bang

Pesquisadores de duas universidades australianas apresentaram à comunidade científica uma ideia que se opõe a tradicional teoria do Big Bang, segundo a qual o universo teria surgido e se expandido a partir de uma explosão. De acordo com esta ideia alternativa, a matéria cósmica seria algo como um fluido em movimento, que se “cristalizou” para dar origem à matéria como conhecemos hoje. O princípio desta ideia é uma analogia ao modo como o ser humano interpretou a água ao longo do tempo. Na Grécia Antiga, existia a ideia de que o líquido pudesse ser uma substância una e contínua, embora já se pensasse que talvez fosse formada por pequenas partículas. O futuro mostraria que a segunda opção era a correta, e as tais partículas chamam-se átomos. Segundo os cientistas australianos (da Universidade de Melbourne e do Instituto Real de Tecnologia de Melbourne), todo o universo funcionaria sob um mecanismo semelhante ao da água. No início de tudo, havia apenas incontáveis partículas indivisíveis, fluindo livremente pelo espaço. Com o passar do tempo, tais partículas começaram a aglutinar-se em vários pontos, dando origem aos primeiros corpos celestes “sólidos”, por assim dizer. Usando a comparação com a água, seria como se a matéria acabasse por “congelar” nestes pontos (embora a ideia não tenha a ver com redução de temperatura, propriamente dita). O nascimento do universo, portanto, seria nada mais do que a totalidade de todos os “congelamentos” que ocorreram.
 
Gravitação Quântica                                                                                           
Existem dezenas de proposições sobre como interagem as forças fundamentais do universo (o que serviria, em última instância, para explicar a origem do universo e como a matéria atua no todo). As mais recentes, tais como a teoria das cordas, tendem a ver a matéria como algo menos “consolidado”: as partículas que o compõem seriam mais instáveis e “em movimento” do que se pensava. No caso da nova teoria, saem as “cordas” e entram as tais partículas fluidas como o material básico de todas as coisas. Para facilitar o entendimento da ideia, os cientistas visualizam cada partícula como o pixel de uma imagem. Seríamos nós, dessa forma, feitos de uma infinidade de “pixels” que podem se rearranjar constantemente. Quando os pixels se cristalizam, temos matéria. E aí, o que prefere? Explosão ou congelamento?

Não há matéria escura em nosso espaço

Mais uma da matéria escura. Astrônomos mapearam o espaço ao nosso redor e chegaram à conclusão de que não há esse tipo de matéria em nossa região do espaço. Isso implica que todas as estrelas, em um raio de 13 mil anos-luz da Terra, são atraídas gravitacionalmente pelo que já existe em nosso sistema solar – e não pela matéria “invisível”. Se isso for realmente confirmado por mais estudos, a teoria de que a matéria escura – que os cientistas afirmam compor cerca de 80% de toda a matéria do universo – permeia nosso universo cai por terra. Mas essa descoberta traz um probleminha: porque apenas aqui a matéria escura não está presente? “As teorias modernas têm sérios problemas para explicar uma distribuição tão curiosa da matéria escura”, afirma o líder do estudo, Christian Moni-Bidin. Uma das hipóteses possível para essa distribuição seria que as partículas de matéria escura são menos massivas do que os modelos atuais imaginam. De acordo com Douglas Spolyar, da Universidade de Chicago, a variedade menos massiva é chamada de “matéria escura quente”. “As pessoas usam isso para explicar duas coisas. Um que você teria um núcleo na distribuição da matéria escura, assim ela se mantém constantemente em um raio da galáxia. Segundo, se você olhar para os sub arcos na Via Láctea, a quantidade de matéria escura quente é muito menor”, afirma. Isso explicaria a descoberta. O problema é que a matéria escura quente teria problemas para formar as galáxias rápido o suficiente para bater com as observações já feitas da formação do universo. Seria isso o fim da teoria da matéria escura? Caso as observações sejam realmente confirmadas, será necessário criar uma nova forma de explicar nosso universo, desde as rotações das galáxias até os agrupamentos celestes

Energia escura pode simular a forma do universo

Nós vivemos em uma época especial. Nas últimas duas décadas, cientistas vêm trabalhado sob a suposição de que sabem tudo sobre o universo. Eles sabem que a quantia da matéria e a energia que contém. Sabem que a forma é plana, e podem traçar a história dos primeiros momentos depois do big bang, e podem ainda prever o destino. Ou pelo menos, pensavam que podiam. E por que tanta confiança? Quantidades raras da radiação deixadas pelo big bang orientaram os cientistas a acreditar que poderiam trabalhar com a curvatura do universo dentro de alguns por centos. Eles determinaram quanta energia o universo contém, e existe uma forma exótica chamada energia escura, que dirige a expansão do espaço. Porém, descobertas recentes surpreendem os cientistas, mostrando que estas alegações podem ser prematuras. Como eles aprenderam mais sobre a energia escura e seu efeito na expansão do espaço e tempo, descobriram que a energia escura e a forma ou geometria do universo são entrelaçadas. Alterando os pressupostos sobre a energia escura pôde-se modificar radicalmente as restrições na forma do universo. Igualmente, sem muitas medidas precisas da geometria, é impossível determinar a natureza e a evolução da energia escura. O estado de acontecimentos tem implicações sérias para como proceder na exploração do universo. Uma série de missões serão planejadas para investigar a energia escura, mas ao menos deverão medir a geometria corretamente, sendo que todo o esforço possa ser em vão. Em suma, os cientistas irão permanecer na incerteza sobre a energia escura. Foi Einstein quem mostrou o que sabemos através gravidade, e é realmente a geometria do espaço e tempo. Em sua teoria da relatividade descreve como o espaço-tempo é deformado e estica por qualquer coisa que o segure, em retorno, os diferentes componentes do universo irão se locomover na curva e no arqueamento do espaço-tempo. Se for aplicada a ideia de Einstein para todo espaço-tempo, será encontrado que o universo expande de acordo da geometria subjacente do próprio espaço. A geometria do universo pode tomar três possíveis formas, cada uma é intimamente associada à quantia total de matéria e energia em cada unidade-volume do espaço. Se há muita matéria, o universo pode ter uma curvatura positiva. Isso significa que a curva é como uma superfície de uma bola e pode ruir. Agora, se existe pouca matéria, a curvatura será negativa: o universo irá curvar como um selim, voar desimpedido além da força gravitacional. Apenas se o universo tiver uma densidade exata, correspondente a alguns prótons por metro cúbico, será plano e sem curvatura. Assim, continuará expandindo para sempre, pois a energia de todos os componentes que estão voando serão balanceados pelas forças gravitacionais. Por isso que a evolução central do universo, entendendo a curvatura do espaço é uma das grandes metas da cosmologia. Antes do final dos anos 90, suspeitavam que o universo fosse aproximadamente plano. Caso contrário, teríamos flutuado ou acabado muito cedo nossa existência. Tudo o que os cientistas têm é uma ideia inacabada. De fato, em qualquer conferência dada em cosmologia no momento, alguns modelos diferentes serão discutidos: um com a geometria plana e cheia da matéria escura, outra também plana e contendo energia escura, e mais outra que seria mais vazia que todas as outras, e teria a curvatura negativa. Para cada uma, a possibilidade que vivemos em um universo positivamente curvado pode ser proposta, mas sem observações firmes e precisas. Existe muita retórica e nenhuma conclusão. Isso mudou nas medidas da radiação microondas de fundo cósmico (cosmic microwave background – CMB), a radiação deixada do big bang, tornou-se um método mais exato e simples para usá-los. No final dos anos 60, um grupo coordenado por Yakov Zel’Dovich da União Soviética, publicou um pequeno documento, um mapa exato da radiação do CMB que tinha traços bem distintos: consistia numa distribuição aleatória de pontos quentes e frios com um tamanho característico.
O grupo de Zel’Dovich calculou a largura dos pontos quando eles foram formados 370,000 anos depois do big bang, uma era em história cósmica conhecida como recombinação. A largura dos pontos que aparecem para nós hoje depende de quão rápido o universo expandiu até então. De acordo com suposições simples e racionais sobre do que o universo foi feito, pode-se determinar a distância para a recombinação com certa exatidão. Sabendo disso, e assumindo que o universo é plano, é utilizado uma trigonometria padrão para trabalhar o tamanho angular dos pontos no céu. Se o universo não é plano, então outras regras seriam usadas. Um tamanho típico dos pontos quentes e frios em um universo plano seria de cerca de um degrau em todo o universo, aproximadamente duas vezes o tamanho angular da lua vista da terra. Se os pontos quentes e frios parecem maiores para nós, então o espaço tem uma curvatura positiva. Se parecem menores, a curvatura é negativa. Em 1992, o satélite COBE da NASA forneceu o primeiro mapa completo dos pontos quentes e frios. As imagens foram simplesmente escurecidas para fixar a geometria do universo, mas eles provocaram uma corrida ao ouro com equipes que competiam para clarear as imagens do CMB, na esperança de chegar a mágica escala angular de cerca de 1 grau. Em 1995, cosmólogos faziam um trabalho difícil no lado obscuro da pesquisa. Com o potencial do COBE para isso ser realmente descoberto, envolveu a preparação para o lançamento e análise dos sinais coletados por dois experimentos realizados pelos balões – Maxima e Boomerang. Ambos os experimentos levavam uma nova classe de detectores de micro-ondas que eram muito mais sensíveis dos que os usados anteriormente. Eles também tinham sido equipados com telescópios que tinham extensão mais precisa dos que do satélites COBE. Ambos significavam que poderíamos fazer um mapa mais detalhado da CMB. Já havia sido fortemente sugerido dos desejados pontos de um experimento chamado MAT/Toco. Mas em apenas alguns anos que haviam sido cortados os sinais, no início dos anos 2000, tiveram uma clara evidência dos pontos quentes e frios com características de tamanho de 1 grau. Isto significa que a geometria do universo estava quase plana. Vendo diretamente uma evidência ambígua. Junto com medidas posteriores do satélite WMAP da Nasa, os resultados fecharam a geometria do universo em poucos por cento. Isso facilitou a vida dos cosmólogos que trabalharam duro com modelos teóricos de diferentes geometrias. Desde então havia apenas um pequeno parâmetro para ajustar – mexer com quase todos os artigos e livros que relatavam que o universo era plano. Finalmente havia alguma certeza sobre a forma do universo.

Teoria: nosso universo pode ser parte de mais universos

Quando aprendemos nossos primeiros conceitos sobre astronomia, geralmente nos é ensinado que existe um único universo, com incontáveis galáxias, e que vivemos dentro de uma delas. Recentemente, no entanto, cientistas estão considerando a chance de haver mais de um universo. Essa ideia, defendida por astrônomos de duas universidades britânicas, é por enquanto apenas uma hipótese. Basicamente, parte de uma teoria chamada de “inflação eterna”. Após o Big Bang, houve diferença na expansão do espaço-tempo (escala física usada para medir eventos espaciais) em lugares diferentes. Ou seja, cada fragmento de universo teria nascido de acordo com suas próprias leis físicas que regem o tempo e o espaço. O que dá suporte a essa teoria, mais recentemente, é o estudo da radiação cósmica de fundo (CMB, na sigla em inglês). Essa radiação, que aparece no universo na frequência mais alta possível de microondas, deixa marcas no espaço-tempo. Segundo a teoria dos vários universos, essas marcas foram deixadas após a colisão dos vários universos ao longo de suas existências. Nosso próprio universo, portanto, poderia já ter colidido com um ou mais “vizinhos”. Para que se possa entender esse mecanismo, os cientistas britânicos fizeram uma comparação com bolhas de sabão. Imagine que cada bolha de sabão é um universo, com suas próprias leis físicas de espaço-tempo. Quando duas bolhas de sabão encostam uma na outra, a área em que elas se tocam torna-se circular. Da mesma maneira, quando dois universos colidem, a radiação CMB resultante do choque também toma forma circular. Essa radiação circular, dessa forma, seria um sinal claro de que dois universos colidiram naquele ponto. A parte prática desse estudo, medida a partir de um algoritmo criado pelos astrônomos, teve um resultado que agradou em parte os cientistas. De fato, foi possível observar a incidência de CMB circulares em certas áreas do espaço, que foram marcadas como indicativos dessa teoria. Não se conseguiu, entretanto, definir um padrão para o aparecimento dessas CMB, que continuam parecendo aleatórias. Um argumento, mais lógico do que propriamente físico, é usado pelos defensores da teoria. Segundo eles, o nosso universo é exatamente “desenhado” para que se possa haver vida, já que a harmonia entre constantes como a gravidade e a velocidade da luz permite isso. Seria muita coincidência, segundo eles, que em um único universo houvesse exatamente essas condições. O que se buscará a partir de agora, portanto, é ordenar as observações para fortalecer essa teoria. Um satélite da Agência Europeia Espacial, chamado Planck, está no espaço desde 2009, e em 2013 deverá ter respostas mais detalhadas sobre a nova teoria.

Cientistas acreditam que as leis da física mudam ao redor do Universo


Você já ouviu falar da teoria do Multiverso? Algumas pessoas acreditam que há vários Universos, um mais maluco do que o outro, governados por suas próprias leis físicas – e elas seriam exclusivas. Agora há uma nova teoria que parece trazer o Multiverso um pouco mais perto: talvez as leis da física não sejam constantes no próprio plano em que estamos. Um professor da Universidade de Gales do Sul, John Webb, acredita que as leis que regem o nosso Universo são extremamente maleáveis. Ele mediu o que seria a força do eletromagnetismo estimada em cerca de 300 galáxias e descobriu que essa ‘constante’ não é a mesma em todos os lugares. Isso quer dizer, segundo ele, que as leis da física e que causaram a formação da vida como a conhecemos, podem ser um fenômeno local e que, em outras áreas mais afastadas do espaço, pode haver uma mecânica completamente diferente, que culminou em outras formas de vida. A variação da constante é ínfima de galáxia para galáxia (1 em 100 mil), mas para Webb, isso parece ser o suficiente. Se ele estiver correto, os astrônomos precisarão descobrir novas leis físicas para cada parte do espaço que forem estudar.

7 bizarros conceitos da física que todos devem conhecer

No dia-a-dia, conceitos básicos de física (como força, aceleração e pressão) não causam tanto espanto, nem soam absurdos. Quando mudamos para outros cenários, porém, as regras mudam: no mundo subatômico, por exemplo, partículas podem estar em dois lugares ao mesmo tempo, e só o fato de observá-las já altera seu estado; buracos negros podem conter a massa de uma estrela condensada em um único ponto; e para um objeto viajando à velocidade da luz, o tempo passa mais devagar. Confira a seguir estas e outras ideias que fogem do que nós consideramos “normal” – mas que não causam tanto espanto em cientistas da área.                                                                                                                                                      
       1 RELATIVIDADE
 O termo se refere a duas das mais famosas teorias da física, ambas propostas por Albert Einstein. Na primeira, divulgada em 1906, o físico demonstrou, por meio de uma série de cálculos, que a velocidade da luz é a maior que pode ser atingida por um corpo. Outra ideia defendida por Einstein foi a de que o tempo pode passar mais devagar (ou mais rápido) conforme a velocidade do observador. Em 1916, ele publicou uma versão expandida dessas ideias, chamada de Teoria Geral da Relatividade. Desta vez, ele abordou também a questão da gravidade, que, segundo ele, seria uma distorção do espaço-tempo causada por objetos massivos. Essa teoria também prevê a existência dos estranhos buracos negros e ajuda a compreender a distorção sofrida pela luz ao atravessar galáxias (causada pela grande força gravitacional desses objetos).

2 MECÂNICA QUÂNTICA
Átomos, todo mundo sabe, são extremamente pequenos. Partículas como prótons e elétrons, por sua vez, são ainda menores, tão pequenas que, em seu “mundo”, prevalece a Mecânica Quântica – proposta no começo do século 20. Na escala subatômica, as partículas podem se comportar como ondas e podem estar em mais de um lugar ao mesmo tempo. É na Mecânica Quântica que estão outros conceitos curiosos, como “emaranhamento” e o “Princípio da Incerteza”.                                                                                            

3 TEORIA DAS CORDAS
 Essa teoria (que, por sinal, é estudada pelo personagem Sheldon Cooper, do seriado The Big Bang Theory) sugere que partículas não são pequenos pontos, mas dobras em objetos unidimensionais similares a cordas. A diferença entre as partículas seria a frequência com que as cordas vibram. A Teoria das Cordas é uma tentativa de conciliar a Física Quântica e a Teoria Geral da Relatividade, além de uma possível base para a hipotética “Teoria do Tudo”, que, supostamente, será capaz de unir todos os conceitos físicos e explicar o universo.                                                                                                    
   
4 SINGULARIDADE
Na física, o termo se refere a um ponto em que tempo e espaço estão infinitamente curvados. Acredita-se que existem singularidades no centro de buracos negros (dentro dos quais, por exemplo, a massa de uma estrela pode estar condensada em uma região minúscula, ou mesmo em um único ponto) e, ainda, que o próprio Big Bang teria começado a partir de uma.                                                                                            
   
5 PRINCÍPIO DA INCERTEZA
Formulado em 1927 pelo físico alemão Werner Heisenberg, o princípio seria uma das consequências da Mecânica Quântica e se refere à precisão máxima em que seria possível medir a localização e a velocidade de uma partícula subatômica. Há dois fatores por trás da incerteza apontada pelo princípio: o primeiro é o de que a simples medição de algo (no caso, uma partícula) já afeta este objeto; o segundo é o fato de que o mundo quântico não é “concreto”, mas baseado em probabilidades, dificultando a medição do estado de uma partícula.                                                                    
 
 6 GATO DE SCHRÖDINGER
Esse termo se refere a uma experiência teórica imaginada pelo físico austríaco Erwin Schrödinger em 1935, que demonstraria o quão estranha era a incerteza por trás da Mecânica Quântica. Schrödinger propôs que se imaginasse um gato, preso em uma caixa junto com material radioativo. No experimento, haveria 50% de chance de que o material se deteriorasse, emitindo radiação e matando o gato, e 50% de chance de que o material não emitisse radiação e que o gato sobrevivesse. De acordo com a física clássica, um desses cenários obrigatoriamente se tornaria realidade e poderia ser observado quando alguém abrisse a caixa. De acordo com a Mecânica Quântica, contudo, o gato não estaria nem vivo nem morto até que alguém abrisse a caixa e observasse (medindo e, portanto, afetando a situação).                                                                        

7 EMARANHAMENTO
 É um dos fenômenos mais conhecidos da Mecânica Quântica, no qual duas partículas, mesmo quando separadas por uma enorme distância, são afetadas mutuamente – ou seja, se uma se move, a outra se move na mesma direção. O conceito perturbou o próprio Albert Einstein, que o chamou de “assombrosa ação a distância”. O emaranhamento já foi induzido em experimentos e cientistas esperam, algum dia, poder aproveitá-lo para criar computadores supervelozes.

Física Quântica

Ondas eletromagnéticas.

Há pouco mais de cem anos, o físico Max Planck, considerado conservador, tentando compreender a energia irradiada pelo espectro da radiação térmica, expressa comoondas eletromagnéticas produzidas por qualquer organismo emissor de calor, a uma temperatura x, chegou, depois de muitas experiências e cálculos, à revolucionária ‘constante de Planck’, que subverteu os princípios da física clássica.
Este foi o início da trajetória da Física ou Mecânica Quântica, que estuda os eventos que transcorrem nas camadas atômicas e sub-atômicas, ou seja, entre as moléculas, átomos, elétrons, prótons, pósitrons, e outras partículas. Planck criou uma fórmula que se interpunha justamente entre a Lei de Wien – para baixas frequências – e a Lei de Rayleight – para altas frequências -, ao contrário das experiências tentadas até então por outros estudiosos.
Albert Einsten, criador da Teoria da Relatividade, foi o primeiro a utilizar a expressão quantum para a constante de Planck E = hv, em uma pesquisa publicada em março de 1905 sobre as conseqüências dos fenômenos fotoelétricos, quando desenvolveu o conceito de fóton. Este termo se relaciona a um evento físico muito comum, a quantização – um elétron passa de uma energia mínima para o nível posterior, se for aquecido, mas jamais passará por estágios intermediários, proibidos para ele, neste caso a energia está quantizada, a partícula realizou um salto energético de um valor para outro. Este conceito é fundamental para se compreender a importância da física quântica.
Seus resultados são mais evidentes na esfera macroscópica do que na microscópica, embora os efeitos percebidos no campo mais visível dependam das atitudes quânticas reveladas pelos fenômenos que ocorrem nos níveis abaixo da escala atômica. Esta teoria revolucionou a arena das idéias não só no âmbito das Ciências Exatas, mas também no das discussões filosóficas vigentes no século XX.
No dia-a-dia, mesmo sem termos conhecimento sobre a Física Quântica, temos em nossa esfera de consumo muitos de seus resultados concretos, como o aparelho de CD, o controle remoto, os equipamentos hospitalares de ressonância magnética, até mesmo o famoso computador.A Física Quântica envolve conceitos como os de partícula – objeto com uma mínima dimensão de massa, que compõe corpos maiores – e onda – a radiação eletromagnética, invisível para nós, não necessita de um ambiente material para se propagar, e sim do espaço vazio. Enquanto as partículas tinham seu movimento analisado pela mecânica de Newton, as radiações das ondas eletromagnéticas eram descritas pelas equações de Maxwell. No início do século XX, porém, algumas pesquisas apresentaram contradições reveladoras, demonstrando que os comportamentos de ambas podem não ser assim tão diferentes uns dos outros. Foram essas idéias que levaram Max Planck à descoberta dos mecanismos da Física Quântica, embora ele não pretendesse se desligar dos conceitos da Física Clássica.
A conexão da Mecânica Quântica com conceitos como a não-localidade e a causalidade, levou esta disciplina a uma ligação mais profunda com conceitos filosóficos, psicológicos e espirituais. Hoje há uma forte tendência em unir os conceitos quânticos às teorias sobre a Consciência.
Físicos como o indiano Amit Goswami se valem dos conceitos da Física moderna para apresentar provas científicas da existência da imortalidade, da reencarnação e da vida após a morte. Professor titular da Universidade de Física de Oregon, Ph. D em física quântica, físico residente no Institute of Noetic Sciences, suas idéias aparecem no filme Quem somos nós? e em obras como A Física da Alma, O Médico Quântico, entre outras. Ele defende a conciliação entre física quântica, espiritualidade, medicina, filosofia e estudos sobre a consciência. Seus livros estão repletos de descrições técnicas, objetivas, científicas, o que tem silenciado seus detratores.
Fritjof Capra, Ph. D , físico e teórico de sistemas, revela a importância do observador na produção dos fenômenos quânticos. Ele não só testemunha os atributos do evento físico, mas também influencia na forma como essas qualidades se manifestarão. A consciência do sujeito que examina a trajetória de um elétron vai definir como será seu comportamento. Assim, segundo o autor, a partícula é despojada de seu caráter específico se não for submetida à análise racional do observador, ou seja, tudo se interpenetra e se torna interdependente, mente e matéria, o indivíduo que observa e o objeto sob análise. Outro renomado físico, prêmio Nobel de Física, Eugen Wingner, atesta igualmente que o papel da consciência no âmbito da teoria quântica é imprescindível.